Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

S1. No.	Major	Intake			
	SCIENCE				
1	Bio Sciences	6**			
2	Chemistry	6			
3	Computer Science	6			
4	Environmental Science	6			
5	Physics	6			
	SOCIAL SCIENCES				
1	Development Studies	5			
2	Gandhian Studies	5			
3	History	10			
4	International Relations and Politics	10			

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University International and Inter University Centre for Nanoscience and Nanotechnology

Course Code	Title C	Credits	Hours	per Week	Level	Tuno
Course Cour		Creuits	Theory	Practicals	Level	Туре
		SEMEST	ER I			
MG1MDCUCN1 01	IntroductionNanotechnologyinMedicineandHealthcare	3	3	0	"	MDC
MG1MDCUCN1 02	Nanotechnology In Sustainable Polymers	3	3	0	"	MDC
		SEMESTI	ER II			
MG2MDCUCN1 01	IntroductionToPolymerNanotechnologyApplications	3	3	0	"	MDC
MG2MDCUCN1 02	NanotechnologyInPlastics Packaging	3	3	0	"	MDC
		SEMESTE	CR III			
MG3MDCUCN2 01	Polymers For Nanomedicine	3	3	0	"	MDC
MG3MDCUCN2 02	Impact Of Micro and Nano Plastics on The Ecosystem	3	3	0	"	MDC
MG3VACUCN20 1	Polymer Adhesives and Coatings	3	3	0	"	VAC
MG3VACUCN20 2	Nano Revolution in Green Tyre	3	3	0	"	VAC
	1	SEMESTE	CR IV			
MG4SECUCN20 1	Fiber Reinforced Polymer (FRP) Composites	3	3	0	۰۵	SEC
MG4SECUCN20 2	AI In Polymer Manufacturing and	3	3	0	"	SEC

	Characterization					
MG4VACUCN20 1	Nanostructures from Natural Origin	3	3	0	"	VAC
MG4VACUCN20 2	Fundamentals Of Nanostructured Polymer Foams	3	3	0	"	VAC
		SEMEST	ER V			
MG5SECUCN30 1	Biodegradable Polymers for Drug Delivery and Tissue Engineering	3	3	0	"	SEC
MG5SECUCN30 2	Non-Destructive Testing of Polymer Composites	3	3	0	۰۵	SEC
MG5VACUCN30 1	Natural Fiber Reinforced Polymer Composites (NFRPCs): Product Designs and Their Applications	3	3	0	"	VAC
MG5VACUCN30 2	Intellectual Property and Patenting in The Polymer Sector	3	3	0	۰۵	VAC
		SEMESTI	ER VI			
MG6SECUCN30 1	Polymer-Based 4D Printing for Advanced Manufacturing	3	3	0	"	SEC
MG6SECUCN30 3	Business Planning for Polymer Entrepreneurs	3	3	0	"	SEC
Tota	l Credits					

*Only for 4-Years Honours Students **Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level Foundation Intermediate Highe Advance PC
--

	(100-199	(200	-299)	r (300- 399)	d (400- 499)	Level (500- 599)
Туре	Major	Minor	MDC	SEC	VAC	AEC

MAHATMA GANDHI UNIVERSITY Graduate School

4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Nanotechnology in Medicine and Healthcare		
Course Type	MDC		
Course Level	100-199		
Course Code	MG1MDCUCN101		
Course Overview	This course provides an understanding of applications of nanotechnology in medical field. Students will gain knowledge about the fundamentals of nanotechnology and its various applications in medical field. They will be able to develop critical thinking skills to analyse and develop new strategies based on nanotechnology to solve medical problems.		
Semester	1	Credit	3
Total Student Learning Time	Instructional hours for theory 45 (L) + 15(T)		ctional hours for al/lab work/field work NA
Pre-requisite	Knowledge of basic chemistry and biology		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Gain a foundational understanding of	R, U, An	
	nanotechnology principles and their applications in healthcare.		
2	Understand various applications of	R, U, A, E	
	nanotechnology in medical diagnostics and		

	therapeutics.		
3	Students will critically evaluate the safety,	U, An, C, S	
	ethical considerations, and future directions		
	of nanotechnology in healthcare.		

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

COURSE CONTENT

Module 1	Hours	CO No
Fundamentals of Nanotechnology in Healthcare Introduction to Nanotechnology; Nanomaterials for Biomedical Applications; Nanotechnology-based Drug Delivery Systems	15	1
Module 2	Hours	CO No
Applications of Nanotechnology in MedicineNanotechnology in Medical Imaging; TherapeuticApplications of Nanotechnology; Nanotechnology inDisease Prevention and Control	15	2
Module 3	Hours	CO No
Safety, Ethics, and Future Directions Nanotoxicology and Safety Assessment; Emerging Trends and Future Directions; Case Studies and Applications	15	3

Mode of	Classroom Activities:
Transaction	Interactive lectures
	Group discussions and problem-solving exercises
	Quizzes and Assignments
	Field activities:
	Lab based activities:
Mode of	Internal Exams
Assessment	Semester Exam
	Assignments and Seminars

Learning Resources

- 1. Amna, T., & Hassan, M. S. (Eds.). (2021). Innovative Approaches for Nanobiotechnology in Healthcare Systems. IGI Global.
- Τ. Κ., Gayen, Κ., 2. Bhowmick, & Maity, S. Κ. (Eds.). (2024). Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. CRC Press.
- 3. Online resources Online polymer introductory courses from websites like Khan Academy, National Institute of Open Schooling (NIOS), MOOC, and NPTEL offer free learning modules on polymers
- 4. Invited lectures by visiting academic and industrial scientists. Held regularly on Wednesday afternoon and Saturday morning throughout the academic year.

Relevance of Learning the Course/ Employability of the Course

Studying nanotechnology in medicine and healthcare holds immense promise for transforming diagnostics, treatment strategies, and patient outcomes. It represents a frontier where interdisciplinary research combining nanoscience, biology, and medicine can lead to innovative solutions for challenging medical issues.

The field of nanotechnology in medicine and healthcare offers a wide range of job opportunities across various sectors. Some key job roles and areas where nanotechnology is applied include:

- Research and Development (R&D)
- Clinical Applications
- Business and Commercialization
- Academic and Education

A SANDHICK	MAHATMA GANDHI UNIVERSITY
	Graduate School
/ विद्यया अमृतमश्तुते	
	4 + 1 Integrated UG and PG Programme

	Nanotechnology (IIUCNN)		International and Inter University Centre for Nanoscience and		
	Nanotechnology (IIUCNN)				
Programme	4 + 1 Integrated UG and PG Programme				
Course Title	Nanotechnology In Sustainable Polymers				
Course Type	MDC				
Course Level	100-199				
Course Code	MG1MDCUCN102				
Course '	This course provides a co	omprehensive	introduction to the		
Overview	exciting and rapidly evolving	g field of nanote	echnology as applied		
	to sustainable polymer sc	ience. Student	s will gain a solid		
	foundation in the principles	of nanotechno	logy, understanding		
	the synthesis, characterization, and properties of				
	nanomaterials. The course will delve into the integration of				
	nanomaterials into polymer matrices to develop advanced				
	materials with enhanced sustainability, performance, and				
	functionality.		F,		
Semester	1	Credit	3		
	Instructional hours for theory		Instructional hours for practical/lab work/field work		
	45 (L) + 15(T)		NA		
Pre-requisite	All Discipline				

CO No.	Expected Course Outcome	Learning PSO Domains No.	
	Upon completion of this course, students will be able to ;	Domanis No.	
1	To understand the fundamental concepts of nanotechnology and polymer science.	R, U	
2	To explore the synthesis and characterization techniques of various nanomaterials.	R, U, C	
3	To learn about the different methods of incorporating nanomaterials into polymer matrices.	U, A	
4	To evaluate the impact of nanomaterials on the properties and performance of polymers.	R, U, An	
5	To assess the environmental and economic sustainability of polymer nanocomposites	R, U, An, E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

Module 1	Hours	CO No
Introduction to Nanotechnology and Polymers		
Overview of Nanotechnology and Its Significance, Basic	15	1
Concepts of Polymer Science, Types of Polymers and their Properties, Challenges in Conventional Polymer-Based		
Materials.		
Module 2	Hours	CO No
Nanomaterials and Polymer Nanocomposites	15	2,3,4
Classification of Nanomaterials (Carbon-Based, Metal,		
Ceramic, Etc.), Synthesis Methods (Top-Down, Bottom-		
Up), Characterization Techniques (Microscopy,		
Spectroscopy, etc.), Properties of Nanomaterials (Optical,		
Electrical, Magnetic, Etc.), Polymer Nanocomposites,		

Types of Polymer Nanocomposites (Reinforcing, Intercalated, Exfoliated), Processing Techniques for Nanocomposites, Influence of Nanomaterials on Polymer Properties (Mechanical, Thermal, Electrical, Etc.).		
Module 3	Hours	CO No
Sustainable Nanotechnology in Polymers Green Synthesis of Nanomaterials, Bio-Based Nanomaterials and Their Applications, Degradable and Compostable Nanocomposites, Life Cycle Assessment, Economic and Environmental Impact of Nanotechnology, Functional Nanopolymers (Conductive, Magnetic, Optical), Sustainable Self-Healing Polymers.	15	5

Mode of Transaction	Classroom activities:			
	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities: 			
Mode of Assessment	 Assignments Internal examination End-semester examination 			

•

Relevance of Learning the Course/ Employability of the Course

This course highly relevant to addressing global challenges like climate change. It equips students with skills to innovate in materials science, creating environmentally friendly solutions. Graduates are sought after in diverse sectors such as materials engineering, chemical industry, automotive, aerospace, energy, and environmental consulting. This interdisciplinary field offers excellent career prospects and opportunities to contribute to a sustainable future.

GANDHIU	MAHATMA GANDHI UNIVERSITY
	Graduate School
िवडया अमृतमघनुने	4 + 1 Integrated UG and PG Programme

School	International and Inter Unive	ersity Centre fo	r Nanoscience and	
	Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Polymer Nanomaterials for Energy Applications			
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUCN101			
Course Overview	This course delves into the exciting and rapidly growing field of polymer nanomaterials for energy applications. Students will explore the synthesis, characterization, and properties of polymer-based nanostructures and their role in enhancing energy conversion, storage, and utilization technologies.			
Semester	2	Credit	3	
	Instructional hours for theory		ctional hours for al/lab work/field	
Total Student Learning Time			work	
	45 (L) + 15(T)		NA	
Pre-requisite	Understanding of Basic Cher	nistry		

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.

	Upon completion of this course, students will be able to ;	
1	To understand the fundamental principles of polymer science and nanotechnology.	
2	To explore the synthesis and characterization techniques of polymer-based nanomaterials for energy applications.	
3	To evaluate the properties and performance of polymer nanomaterials in energy devices.	
4	To investigate the latest advancements and challenges in the field of polymer nanomaterials for energy.	
5	To develop critical thinking and problem-solving skills for addressing energy-related issues using polymer nanotechnology.	
6		

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to Energy and Nanotechnology		
Energy Crisis, Sustainable Energy Sources, Basics of		
Polymer Science, Introduction to Nanotechnology and its		
Principles, Characterization Techniques for Nanomaterials		
(SEM, TEM, AFM, XRD, FTIR, Etc.)		
Module 2	Hours	
Polymer Nanomaterials for Energy Conversion		
Organic Solar Cells: Principles, Materials, Device		
Architecture, Polymer-Based Dye-Sensitized Solar Cells,		
Polymer-Based Perovskite Solar Cells, Polymer-Based		
Thermoelectric Materials and Devices.		
Module 3	Hours	

Polymer Nanomaterials for Energy Storage and Harvesting
Lithium-ion Batteries: Components, Working Principle,
And Challenges, Polymer Electrolytes and Solid-State
Batteries, Sodium-Ion Batteries and Polymer-Based
Electrodes, Supercapacitors: Principles, Materials, and
Applications, Piezoelectric and Pyroelectric Polymers,
Polymer-Based Nanogenerators, Energy Harvesting from
Ambient Sources (Solar, Wind, Vibration).

Mode of	Classroom activities:
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities:
Mode of Assessment	 Assignments Internal examination End-semester examination

- Textbooks
 - 1. Polymer Nanocomposites: Synthesis, Characterization, and Applications by Yiu-Wing Mai and Zhong-Zhen Yu
 - 2. Polymer Nanomaterials for Energy and Environmental Applications by Niranjan Karak
 - 3. Nanostructured Polymer Blends and Composites in Textiles by Visakh P. M., Long Yu
- Research articles
- Review articles

Relevance of Learning the Course/ Employability of the Course

This course equips students with cutting-edge knowledge in sustainable and renewable energy technologies, making them highly relevant in today's green energy landscape. This multidisciplinary course prepares students for careers in nanotechnology, materials science, and energy sectors, enhancing their employability in roles focused on energy storage, conversion, and generation. Proficiency in these areas meets the increasing demand for innovative solutions in the energy industry, positioning graduates at the forefront of technological

advancements.	
TREAS SEGURATE	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	International and Inter Univ Nanotechnology (IIUCNN)	ersity Centre	for Nanoscience and
Programme	4 + 1 Integrated UG and PG	Programme	
Course Title	Nanotechnology In Plastic	s Packaging	
Course Type	MDC		
Course Level	100-199		
Course Code	MG2MDCUCN102		
Course Overview	Nanotechnology, the manipulation of matter at the nanoscale, has revolutionized various industries, including plastics and packaging. By incorporating nanomaterials into plastics, manufacturers can create packaging materials with enhanced properties, such as increased strength, barrier properties, antimicrobial activity, and sustainability. This course explores the principles, applications, and challenges of nanotechnology		
Semester	in plastics packaging.	Credit	3
Total Student Learning Time	Instructional hours for theory		ructional hours for cical/lab work/field work
	45 (L) + 15(T)		NA
Pre-requisite	All Discipline		

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Understand the fundamentals of nanotechnology and its applications in polymer science.	U, R	
2	Explore the various types of nanomaterials used in plastic packaging and the methods of incorporating nanomaterials into plastic packaging.	U, R, An	
3	Evaluate the impact of nanotechnology on the properties and performance of plastic packaging, its application and assess the environmental and health implications of nanotechnology in packaging.	An, E	
4	Develop critical thinking and problem-solving skills related to nanotechnology in packaging.	An, E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1			Hours	CO No
Introduction	to Nanotechnology	and Plastic	s 15	1
Packaging				
Basics Of Nano	technology and its Poten	tial in Packaging	,	
Overview of the	Plastics Packaging Indus	try, Challenges ir	1	
Conventional Pl	astic Packaging			
Module 2			Hours	
Nanomaterials	for Packaging Applicati	ons	15	2
Types of Nar	nomaterials (Nanopartic	cles, Nanotubes	,	
Nanofibers, Et	c.), Properties and C	haracteristics o	f	
Nanomaterials,	Synthesis and	Characterization	1	
Techniques,	Polymer Matrix and	1 Nanomateria	1	

Interactions, Processing Techniques for Nanocomposites, Mechanical, Thermal, and Barrier Properties of Nanocomposites		
Module 3	Hours	
Functional Packaging with Nanotechnology	15	3,4
Antimicrobial Packaging Using Nanomaterials, Intelligent		
Packaging with Nanosensors, Active Packaging with		
Nanomaterials for Controlled Release, Biodegradable and		
Compostable Nanocomposites, Life Cycle Assessment of		
Nanomaterial-Based Packaging. Applications in Food,		
Pharmaceutical, and Medical Packaging.		

Mode of Transaction	Classroom activities:		
	Interactive lectures		
	 Group discussions and problem-solving exercises Quizzes and Assignments 		
	Lab based activities:		
Mode of	Assignments		
Assessment	Internal examination		
	End-semester examination		

- 1. Textbooks
 - Nanotechnology in Food Packaging by Vimal Katiyar, Vikas Yadav, and Saurabh Nanavati
 - Polymer Nanocomposites for Food Packaging Applications by Jasim Ahmed, Brijesh K. Tiwari, Syed H. Imam, and M.A. Rao
 - Nanotechnology-Enhanced Food Packaging by Jorge Barros-Velázquez
- 2. Journal Articles
- 3. Review Articles

Relevance of Learning the Course/ Employability of the Course

This is a highly relevant course due to the growing demand for sustainable and functional packaging solutions. Graduates of this course will possess a unique skill set, making them highly employable in the packaging industry, nanotechnology research, and related sectors. They will be equipped to develop innovative packaging materials with enhanced properties, contributing to a more sustainable future.

MAHATMA GANDHI UNIVERSITY Graduate School

4 + 1 Integrated UG and PG Programme

School	International and Inter Unive	rsity Centre fo	r Nanoscience and	
	Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG I	Programme		
Course Title	Polymers for Nanomedicine	2		
Course Type	MDC			
Course Level	200-299			
Course Code	MG3MDCUCN201			
Course	This course introduces the fu	undamentals of	damentals of polymers and their	
Overview			polymers, polymer	
	nanocarriers, and polymer- emphasis is on exploring h delivery, diagnostics, and tiss	now polymers	are used for drug	
Semester	3	Credit	3	
	Instructional hours for	Instruc	tional hours for	
	theory	practica	al/lab work/field	
Total Student		work NA		
Learning Time	45 (L) + 15(T)			

COURSE OUTCOMES (CO)

Expected Course Outcome	

CO No.	Upon completion of this course, students will be able to ;	Learning Domains	PSO No.
1	Understand the fundamental concepts of polymers and their relevance in nanomedicine.	R, U, A	
2	Identify and describe various polymeric materials used in medical applications.	U, A, An	
3	Explain the role of polymers in drug delivery systems and their mechanisms.	U, A, E	
4	Analyze the properties and functionality of polymeric nanocarriers for therapeutic and diagnostic applications.	U, An, C	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Hours	CO No
10	1
Hours	
14	2, 3
Hours	
	10 Hours 14

Applications and Advances in Polymer-Based Nanomedicine	15	4
Polymers in tissue engineering and regenerative medicine,		
Stimuli-responsive polymers (pH-sensitive, temperature-		
sensitive, etc.). Polymers in diagnostic imaging (MRI		
contrast agents, fluorescent polymers). Biodegradability		
and biocompatibility considerations, Challenges and future		
trends in polymers for nanomedicine		

Mode of	Classroom activities:
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Guest lectures by experts in the field Lab based activities:
Mode of Assessment	 Assignments Internal examination End-semester examination

- 1. Introduction to Polymers by Robert J. Young
- 2. Nanomaterials for Biomedical Applications by A.K. Gaharwar
- 3. Polymeric Biomaterials by S.L. Cooper

Relevance of Learning the Course/ Employability of the Course

This course is highly relevant due to the burgeoning field of nanomedicine and the crucial role of polymers in its advancements. Nanomedicine is a rapidly evolving interdisciplinary field with immense potential to revolutionize healthcare. Understanding the principles of polymer chemistry and their application in nanomedicine is essential for researchers and professionals in this domain. Career Opportunities:

Research & Development: Pharmaceutical companies, Biotechnology firms Academic institutions, Government research laboratories

Industry: Medical device companies, Nanomaterials manufacturing, Biomedical Engineering

By learning about polymers for nanomedicine, students will be well-equipped to contribute to this exciting and rapidly growing field and significantly impact human health and well-being.

GNDHIL.	MAHATMA GANDHI UNIVERSITY
	Graduate School
विद्यया अमृतमञ्जूरो	4 + 1 Integrated UG and PG Programme

School	International and Inter Unive	ersity	Centre for	Nanoscience and	
	Nanotechnology (IIUCNN)				
Programme	4 + 1 Integrated UG and PG	Progr	amme		
Course Title	Impact of Micro and Nano	Plast	ics on the	Ecosystem	
Course Type	MDC				
Course Level	200-299	200-299			
Course Code	MG3MDCUCN202				
Course	This course explores the em	ergin	ng and significant environmental		
Overview	threat posed by micro and nano plastics. As plastic pollution				
	continues to accumulate in	ecos	ystems wo	rldwide, the focus is	
	shifting from visible debris to	o mic	ro and nan	o-sized particles that	
	are not easily detected but a	e hav	ving profou	nd effects on wildlife,	
	ecosystems, and human heat	alth.	This cours	e will provide an in-	
	depth understanding of the	e sou	rces, char	acteristics, behavior,	
	and consequences of mic	ro a	nd nano	plastics in various	
	environmental contexts.				
Semester	3	Cree	dit	3	
	Instructional hours for		Instru	ctional hours for	
Total Student	theory		practical/lab work/field work		
Learning Time					
	45 (L) + 15(T)			NA	

Pre-requisite	Understanding of Basic Chemistry

СО	Expected Course Outcome		
No.		Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	Domains	NO.
1	To understand the fundamentals plastic pollution and generation of micro-nano plastics.	R, U	
2	Explore the types and different paramenter of micro – nano plastics	R,U	
3	Evaluate environmental interactions, distribution and transfer among various spheres,	R,U,A,E,	
4	To Handling latest analytical methods for Micro- Nanoplastics.	R,U,A,An,S	
5	Mitigation and management of micro-nano plastics	R, U, An	
6	Gaps in our current understanding are identified, and bottle necks in current technologies and analytical techniques are enlisted and presented as future challenges.	R,U	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to Microplastics	15	1,2
Introduction to micro and nanoplastics, Origin, growth and		
fate of micro and nanoplastic production, Types and		
classification of micro and nano plastics, parameters of		
classification (Origin, size, shape, composition, color,		
toxicity.		
·		

Module 2	Hours	
Interaction of micro and nano plastics in every sphere	15	3
of Earth, (Atmosphere, Land/soil, aquatic) and food		
chain.		
Scant Attention on the Micro and nanoplastics, impacts of		
physical and chemical properties, Attention of Micro and		
nano plastics in the atmosphere, characteristics and fate		
of atmospheric microplastics, Modes of Entry into the		
Human Physiological System, Translocation into the Vital		
Organs.		
Module 3	Hours	
Analytical Methods, Mitigation, Management, and the	15	4,5,6
Challenges		
Methods for identification of micro and nano plastics -		
theory and practice, mitigation and management methods,		
gaps and challenges.		
Mode of Classroom activities:		
Transaction Interactive lectures Group discussions and proble Quizzes and Assignments Lab based activities:	m-solving e	exercises
Mode of • Assignments		
 Assessment Internal examination End-semester examination 		

• Sewell, M. A., & Korley, J. P. (2022). *Microplastics and nanoplastics in freshwater ecosystems: Impact on biota and the environment. Science of the Total Environment*, 740, 140394.

Relevance of Learning the Course/ Employability of the Course

This course is highly relevant to addressing plastic pollution by the generation of micro and nano plastics. Learning about micro and nanoplastics is essential for addressing current global environmental challenges and opens a wide range of career opportunities both in research and industry.

ANDH	MAHATMA GANDHI UNIVERSITY
	Graduate School
विद्यमा अमृतमयन्ते	4 + 1 Integrated UG and PG Programme

School	International and Inter Univers	ity Centre fo	r Nanoscience and	
	Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG Pro	ogramme		
Course Title	Polymer Adhesives and Coatings			
Course Type	VAC			
Course Level	200-299			
Course Code	MG3VACUCN201			
Course	This course covers the fundam	entals of polymer adhesives and		
Overview	coatings, including their composition, properties, application			
	methods, and performance cha	characteristics. Emphasis is placed		
	on the molecular design of po	lymers, the		
	adhesion, and how coatings are			
	protect, decorate, or enhance s	urface prope	orties	
Semester	3 C1	edit	3	
	Instructional hours for	Instruc	ctional hours for	
Total Student	theory	practic	al/lab work/field	
		work		
Learning Time			10	
	40 (L) + 10(T)		10	
Pre-requisite	Basic understanding of chemis	l try		

CO	Expected Course Outcome		
No.		Learning	PSO
	Upon completion of this course, students will be able to ;	Domains	No.
1	Understand the Fundamentals of Adhesion and Coating	R, U, A	
2	Analyze the Composition and Types of Adhesives	U, A, An	
3	Analyze the factors affecting adhesive performance including surface preparation, environmental conditions, and substrate compatibility	U, A, E	
4	Understand the Applications of Adhesives and Coatings	U, A, C	
5	Explore Emerging Trends and Innovations	U, A, S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to Adhesion	10	1,2
Definition of adhesion and cohesive forces, Types of adhesive		
bonds: mechanical, physical, and chemical, Composition of		
Polymer Adhesives Structure and composition of adhesive		
materials: Monomers, Polymers, Curing agents, Types of		
polymer adhesives, Factors Affecting Adhesive Performance		
Module 2	Hours	
Fundamentals of Coating	12	1,3,4
Coating processes: Spray, Dip-coating, Electrodeposition, Types		
of coatings: Organic coatings, Inorganic coatings, Role of		

Interfacial Phenomena-Surface energy and its role in adhesion,		
Contact angle measurement and wetting behaviour, Surface		
preparation techniques: Cleaning, Priming, Roughening		
Module 3	Hours	
Applications of Adhesives and Coatings	10+8	2,4,5
Automotive industry: Structural bonding, sealing, and coatings,		
Aerospace: Lightweight bonding, corrosion resistance coatings,		
Emerging Trends and Innovations		
Smart adhesives and coatings: Self-healing, reversible adhesion,		
Environmental sustainability: Green adhesives, eco-friendly		
coatings, Advances in nanotechnology: Nano-coatings, nano-		
fillers for enhanced performance		
Lab section		
Preparation of polymer-based adhesives using different polymers		
Methods of applying coatings		

Mode of	Classroom activities:
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments
	PreparationTesting

Mode of	Assignments
Assessment	Internal examination
	End-semester examination

- Handbook of Adhesion" by Irving I. Schwartz
- Adhesion and Adhesives" by D. S. M. K. L. Thomas
- "Polymer Coatings: Technology and Applications" by P. G. McHugh

Relevance of Learning the Course/ Employability of the Course

Learning the Polymer Adhesives and Coatings course positions individuals at the forefront of a rapidly evolving field with ample career opportunities in diverse industries. It offers a combination of scientific knowledge and practical applications, making it a valuable skill set for future employability in both established and emerging sectors.

UNDHI (MAHATMA GANDHI UNIVERSITY
	Graduate School
र्मितान् अमृतमञ्चर्स	4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and		
	Nanotechnology (IIUCNN)		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Nano Revolution in Green Tyre		
Course Type	VAC		
Course Level	200-299		
Course Code	MG3VACUCN202		
Course	This course explores the integration of nanotechnology in the		
Overview	tyre industry, focusing on how nanomaterials are transforming		
	the production of tyres, enhancing their performance, and		
	contributing to sustainability. Emphasis will be placed on green		
	technologies, innovative materials, and the environmental		
	benefits of modern tyre manufacturing techniques. The course		
	will also discuss future trends, innovations, and the role of		
	nanotechnology in improving tyre safety, efficiency, and		
	performance.		
Semester	3	Credit	3

Total Student Learning Time	Instructional hours for theory	Instructional hours for practical/lab work/field work		
	35 (L) + 15(T)	10		
Pre-requisite	All discipline			

со	Expected Course Outcome		
No.		Learning	PSO
	Upon completion of this course, students will be able to;	- Domains	No.
1	Understanding of Nanotechnology in Tyre Manufacturing	R,U	
2	Innovative Materials and Their Impact on Tyre Performance	R,U,E	
3	Application of Green Technologies in Tyre Industry	A,E,R	
4	Environmental Benefits and Sustainability	U,R,E,A	
5	Future Trends and Innovations in Tyre Technology	A,An,,S,R	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to Nanotechnology and Tyre Industry, Nanomaterials	10	
and Their Role in Tyre Manufacturing, Types of nanomaterials		
used in tyre production, Mechanisms of nanomaterials in		
improving tyre performance, Environmental Benefits and		
Sustainability of Green Tyres, Balancing tyre performance with		
environmental impact, Regulatory Framework and Standards for		
Green Tyres.		
Module 2	Hours	

Green Technologies in Tyre Manufacturing, Sustainable raw materials, Impact of nanomaterials on tyre durability, wear resistance, and fuel efficiency, Application of nanotechnology in improving traction, safety, and comfort, Case studies of advanced tyre designs	12
Module 3	Hours
 Environmental regulations impacting the tyre industry (e.g., REACH, ISO 14001), Standards for green tyres: Certification, testing, and labelling, Global trends in sustainable tyre practices Future Trends in Tyre Technology, Smart tyres: Sensors, monitoring, and predictive maintenance, Emerging nanomaterials for future tyre technologies Lab wok Synthesis of silica nanoparticles and their incorporation into rubber matrices Testing and characterization of synthesized nanoparticles and their dispersion in rubber compounds. Mixing rubber with nanomaterials and observing compound rheology and viscosity 	22

Transaction	Interactive lecturesGroup discussions and problem-solving exercises			
	Quizzes and Assignments			
La	Lab based activities:			
	Synthesize rubber compounds			
	Characterization			
Mode of	Assignments			
Assessment	Internal examination			
	End-semester examination			

- Green Tires: A Guide to the Environmental Impact of Tires and Sustainable Solutions" by Andrew J. M.
- Advances in Green Technology" edited by Vishnu S. and Alok S.

Relevance of Learning the Course/ Employability of the Course

This course is highly relevant as it provides cutting-edge knowledge that blends nanotechnology with environmental sustainability, equipping individuals with the skills to drive innovation in the tyre industry and contribute to global sustainability efforts.

GANDHIL.	MAHATMA GANDHI UNIVERSITY
	Graduate School
विद्यमा अमृतमञ्जूरो	4 + 1 Integrated UG and PG Programme

School	International and Inter Univer-	sity Centre fo	r Nanoscience and		
	Nanotechnology (IIUCNN)				
Programme	4 + 1 Integrated UG and PG Programme				
Course Title	Fiber Reinforced Polymer (FRP) Composites				
Course Type	SEC				
Course Level	200-299				
Course Code	MG4SECUCN201				
Course	This course offers an in-depth understanding of Fiber Reinforced				
Overview	Polymer (FRP) Composites, focusing on their properties,				
	manufacturing processes, structural design, and real-world				
	applications. FRP composites, which combine polymer matrices				
	with reinforcing fibers have revolutionized various industries				
	due to their superior strength-to-weight ratio, durability, and				
	versatility. Students will explore the mechanics of FRP materials,				
	learn about the different fiber and resin types, understand				
	composite manufacturing te	chniques, a	nd delve into the		
	performance characteristics of	of FRP compo	osites in structural,		
	aerospace, automotive, and civ	vil engineering	g applications.		
Semester	4 C	redit	3		
Semester		reult	5		
Total Student	Instructional hours for	rs for Instructional hours for			
	theory	practica	practical/lab work/field		
Learning Time			work		

	45 (L) + 15(T)	NA
Pre-requisite	Understanding of Basic Chemis	try

CO	Expected Course Outcome		
No.		Learning	PSO No.
	Upon completion of this course, students will be able to ;	Domains	
1	Understand the Fundamentals of FRP Composites	U	
2	Analyze the Mechanical Properties of FRP Composites	An,U,R	
3	Understand Manufacturing Techniques for FRP Composites	U,R,S	
4	Evaluate the Performance of FRP Composites in Various Applications	U,R,A,	
5	Conduct Experimental Testing and Characterization	C,S,R,A	
6	Stay Informed on Current Trends and Innovations in FRP Composites	E,R,A	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to FRP Composites	12	
Overview of composite materials, Historical development of FRP composites, Components of FRP composites: fibers and matrix, Properties of different reinforcement materials. Fiber geometry: unidirectional, woven, chopped strand mats. Fiber- matrix interaction, Types of matrix materials: thermosets vs. thermoplastics		
Module 2	Hours	
FRP Composite Manufacturing Techniques	14	

Hand lay-up process, Filament winding, Resin transfer molding (RTM) and vacuum infusion, Compression molding, Additive manufacturing for FRPs, Mechanical Properties of FRP Composites, Structural Design of FRP Composites	
Module 3	Hours
Applications of FRP Composites, Environmental and	15
Sustainability Aspects of FRP Composites, Challenges and	
Future Trends in FRP Composites, Case Studies and	

Mode of	Classroom activities:	
Transaction	 Interactive lectures Hands-on laboratory exercises. Industry guest speakers and case study analysis. Group projects and presentations Quizzes and Assignments Lab based activities:	
Mode of Assessment	 Assignments Internal examination End-semester examination 	

Learning Resources

- Fiber-Reinforced Composites: Materials, Manufacturing, and Design" by P.K. Mallick
- Handbook of Composite Materials" by L. K. T. Gupta
- Fundamentals of Composites Materials" by V. R. K. Murthy

Relevance of Learning the Course/ Employability of the Course

The growing demand for advanced materials in various industries makes a course on Fiber Reinforced Polymer Composites highly valuable. Graduates of this course will have diverse employability opportunities, contributing to cutting-edge developments in material science, engineering, and sustainable technologies.

(ANDHI)	MAHATMA GANDHI UNIVERSITY
	Graduate School
विद्यया अमृतमञ्जूरो	4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and		
	Nanotechnology (IIUCNN)		
	4 + 1 Integrated UG and PG Programme		
Programme	4 + 1 Integrated UG and PG	Programme	
Course Title	AI In Polymer Manufacturing and Characterization		
Course Type	SEC		
Course Level	200-299		
Course Code	MG4SECUCN202		
Course	The course would likely cover the integration of artificial		
Overview	intelligence (AI) technologies into the polymer manufacturing		
	process and the techniques used for characterizing polymer		
	materials. The objective would be to enable students or		
	professionals to understand how AI can be applied to improve		
	the efficiency, precision, and innovation in polymer production		
	and analysis		
Semester	4	Credit	3
	Instructional hours for Instructional hours for		tional hours for
Total Student	theory practical/lab work/fiel		al/lab work/field
Learning Time	work		work

	45 (L) + 15(T)	NA
Dro roquisito	A solid background in chemistry	y, physics, mathematics, and
Pre-requisite basic programming skills		

COURSE OUTCOMES (CO)

CO	Expected Course Outcome		
No.		Learning	PSO
	Upon completion of this course, students will be able to ;	Domains	No.
1	Apply AI in polymer discovery and manufacturing	R, U, A	
2	Skills to predict polymer properties using AI models	S	
3	Optimize manufacturing for efficiency and quality with AI	An, E	
4	Capability to design new polymer materials through AI-driven insights	U, A	
5	Proficiency in using AI for advanced characterization of polymers	E, C, S	
6	Implementing AI techniques for quality control in polymer manufacturing	An, E, C, S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

COURSE CONTENT

Module 1	Hours	CO No
Introduction to Polymers and AI: Fundamentals of	10	1,2,3
polymer chemistry and polymer manufacturing processes,		
Basics of artificial intelligence and machine learning.		
Module 2	Hours	
AI Techniques in Polymer Manufacturing: Data	15	3,4

Machine learning algorithms for process optimization, Predictive modelling of polymer properties, Case studies on AI applications in polymer production		
Module 3	Hours	
AI in Polymer Characterization: Techniques for polymer	15	4,5
characterization, AI-based methods for analysing polymer		
structures, Image analysis, and pattern recognition in		
structures, Image analysis, and pattern recognition in polymer characterization, Practical applications and		

Mode of	Classroom activities:	
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities: 	
Mode of Assessment	 Assignments Internal examination End-semester examination 	

Learning Resources

- Artificial Intelligence in Polymer Science and Technology" by Satya N. Sahoo, Swadhin K. Behera
- Machine Learning for Materials Science" by Rajiv S. Nair, Surya R. Choudhury, and Nikhil R. Choudhury

Relevance of Learning the Course/ Employability of the Course

This course provides students with a highly relevant skill set that is in demand across various high-tech industries. The application of AI in optimizing manufacturing processes, improving material properties, and innovating new polymer materials positions graduates well for careers in diverse sectors, ensuring strong employability and growth in their professional journey.

GAN DH/U	MAHATMA GANDHI UNIVERSITY
	Graduate School
िग्तिर्भः विद्यवा अमृतसङन्त	4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and		
	Nanotechnology (IIUCNN)		
Programme	4 + 1 Integrated UG and PG	Programme	
Course Title	Nanostructures from Natural Origin		
Course Type	Skill Enhancement Course		
Course Level	200-299		
Course Code	MG4SECUCN203		
Course	This syllabus is designed to introduce students to		
Overview	nanostructures derived from natural sources, focusing on their synthesis, properties, applications, and potential future developments. The course is divided into three modules, each covering essential aspects of natural nanomaterials.		
Semester	4	Credit	3

Total Student Learning Time	Instructional hours for theory	Instructional hours for practical/lab work/field work
	45	NA
Pre-requisite	All discipline	

COURSE OUTCOMES (CO)

СО	Expected Course Outcome		
No.		Learning	PSO
	Upon completion of this course, students will be able to ;	Domains	No.
1	Acquire fundamental knowledge of natural nanostructures and their synthesis mechanisms.	U	
2	Identify and describe the types and properties of nanostructures found in nature.	Е	
3	Analyse and explain the functional properties of natural nanostructures.	An	
4	Develop an understanding of the applications of these nanomaterials in various industries.	А	
5	Develop a comprehensive understanding of the environmental, ethical, and regulatory aspects of natural nanomaterials.	U	
6	Critically assess the future potential and challenges of nanomaterials sourced from nature.	E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

COURSE CONTENT

Module 1	Hours	CO No
Introduction to Nanostructures from Natural Sources:		
Introduction to Nanotechnology, Natural Nanostructures,		
Synthesis Mechanisms of Natural Nanostructures,	15	1, 2
Characterization Techniques	10	
Module 2	Hours	
Properties and Functionalities of Natural		
Nanostructures: Physical and Chemical Properties of		
Natural Nanostructures, Biological Properties and	15	3, 4
Biocompatibility, Functional Applications		-, -
Module 3	Hours	
Environmental and Ethical Considerations of		
Nanostructures from Natural Origin: Environmental		
Impact of Natural Nanostructures, Regulation and Safety	15	5, 6
Concerns, Challenges and Future Directions, Real-world		0,0
examples of natural nanostructures used in industry and		

Mode of	Classroom activities:
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities:
Mode of	Assignments
Assessment	Internal examination
	End-semester examination

Learning Resources

- "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" by Guangwen Zhou and Wenxing Li
- "Nanobiotechnology: Concepts, Applications, and Perspectives" edited by Christof M. Niemeyer and C. A. Mirkin

• "Biomaterials Science: An Introduction to Materials in Medicine" by Buddy D. Ratner, Allan S. Hoffman, and Frederick J. Schoen

• "Natural Nanostructures in Biochemistry" by L. J. Safran

Relevance of Learning the Course/ Employability of the Course

This course is highly relevant as it provides interdisciplinary knowledge that bridges nanotechnology, biology, chemistry, and environmental science, preparing students to address global challenges related to sustainability, health, and technology.

GNDH/U	MAHATMA GANDHI UNIVERSITY
	Graduate School
विद्यया अमृतपञ्चत	4 + 1 Integrated UG and PG Programme

School	International and Inter Univ	ersi	ty Centre for	r Nanoscience and
	Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Fundamentals of Nanostructured Polymer Foams			
Course Type	VAC			
Course Level	200-299			
Course Code	MG4SECUCN204			
Course	This course offers a compre	course offers a comprehensive overview of polymer foams,		
Overview	exploring their fundamental properties, production technologies,			
	and wide-ranging application	ns. l	t delves into	o the science behind
	foam structures, key manufa	ares, key manufacturing processes, and their use in		
	industries such as packagi	ng,	, construction, automotive, and	
	healthcare.			
Semester	4	Cre	dit	3
	Instructional hours for		Instructional hours for	
Total Student	theory		practical/lab work/field	
Learning Time			work	
	45 (L) + 15(T)			NA
Pre-requisite	Understanding of Basic Che	mist	stry	

COURSE OUTCOMES (CO)

CO	Expected Course Outcome		
No.		Learning	PSO
	Upon completion of this course, students will be able to ;	Domains	No.
1	Understanding the properties of polymer foams, how they are processed, and the predominant materials involved in their manufacturing.	R, U, A	
2	The main concepts regarding foaming processes and formulations to tailor their properties.	U, A, An	
3	The main types of polymeric foams along with some of the chemistry involved in their manufacturing and their general properties.	U, A, E	
4	The fabrication methods of polymeric foams along with the main materials employed for each method and their respective advantages and disadvantages.	U, A, C	
5	The main applications of polymeric foams.	U, A, S	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1: Introduction to Polymeric Foams	Hours	CO No
Polymeric foams and their influence in the global market. Foaming processes and formulations to tailor their properties. The main types of polymeric foams along with some of the chemistry involved in their manufacturing and their general properties. The fabrication methods of polymeric foams along with the main materials employed for each method and their respective advantages and disadvantages.	14	1,2,3
Module 2: Foaming Technology	Hours	

Extrusion foaming, batch foaming, thermoset reactive	14	2,3
foaming, compression foaming, rotational foam molding,		
injection foam molding, film foaming, bead foaming, and so		
forth—all of which are some of the well-established polymer		
foam production techniques—are key features that are		
discoursed in their structure		
discussed in this chapter.		
Module 3: Micro, Macro and Nano Polymer foams- Materials, Synthesis, Technology, and Applications	Hours	
Module 3: Micro, Macro and Nano Polymer foams-	Hours 15	4,5
Module 3: Micro, Macro and Nano Polymer foams- Materials, Synthesis, Technology, and Applications		4,5
Module 3: Micro, Macro and Nano Polymer foams- Materials, Synthesis, Technology, and Applications Thermoplastic Elastomeric Foams, Polystyrene Foams,		4,5
Module 3: Micro, Macro and Nano Polymer foams- Materials, Synthesis, Technology, and Applications Thermoplastic Elastomeric Foams, Polystyrene Foams, Polyurethane Foams, Epoxy Foams, Phenolic foams,		4,5

Mode of	Classroom activities:		
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities: 		
Mode of Assessment	 Assignments Internal examination End-semester examination 		

Learning Resources

- 1. Polymeric Foams: Fundamentals and Types of Foams (Volume 1) eISBN: 9780841297173
- 2. Handbook of Manufacturing Engineering and Technology https://doi.org/10.1007/978-1-4471-4670-4
- 3. Complex Macromolecular Systems I https://doi.org/10.1007/978-3-642-12876-9
- 4. Handbook of Thermosetting Foams, Aerogels, and Hydrogels, From Fundamentals to Advanced Applications

Relevance of Learning the Course/ Employability of the Course

Learning this course equips students with specialized knowledge in polymer foams, a critical material in various industries such as automotive, construction, aerospace, packaging, and healthcare.